
SubX is a research to operations project in service of developing  

better operational subseasonal forecasts.

THE SUBSEASONAL  
EXPERIMENT (SubX)

A Multimodel Subseasonal Prediction Experiment

Kathy Pegion, Ben P. Kirtman, Emily Becker, Dan C. Collins, Emerson LaJoie, Robert Burgman,  
Ray Bell, Timothy DelSole, Dughong Min, Yuejian Zhu, Wei Li, Eric Sinsky, Hong Guan, 

Jon Gottschalck, E. Joseph Metzger, Neil P Barton, Deepthi Achuthavarier, Jelena Marshak, 
Randal D. Koster, Hai Lin, Normand Gagnon, Michael Bell, Michael K. Tippett, Andrew W. Robertson, 

Shan Sun, Stanley G. Benjamin, Benjamin W. Green, Rainer Bleck, and Hyemi Kim

E	arly warning of heat waves, extreme cold, flooding  
	rains, f lash drought, or other weather hazards  
	as far as 4 weeks into the future could allow for 

risk reduction and disaster preparedness, potentially 
preserving life and resources. Less extreme, but 
no less important, reliable probabilistic forecasts 
about the potential for warmer, colder, wetter, or 
drier conditions at a few weeks lead are valuable for 
routine planning and resource management. Many 
sectors would benefit from these predictions, includ-
ing emergency management, public health, energy, 
water management, agriculture, and marine fisher-
ies [see White et al. (2017) for a review of potential 
applications]. However, a well-known “gap” exists in 
our current prediction systems at this subseasonal 
time scale of 2 weeks to 1 month. This gap falls be-
tween the prediction of weather, where atmospheric 
initial conditions contribute to skillful forecasts, 
and seasonal prediction, which is guided by slowly 
evolving surface boundary conditions such as sea 
surface temperatures and soil moisture (National 
Research Council 2010; Brunet et al. 2010; National 
Academies of Sciences, Engineering and Medicine 

2017; Mariotti et al. 2018; Black et al. 2017; DelSole 
et al. 2017).

The potential for successful prediction at the 
subseasonal time scale has been established for some 
regions and seasons (e.g., Pegion and Sardeshmukh 
2011; DelSole et al. 2017; Li et al. 2015), but it is not 
clear whether the full potential predictability has 
been realized. Additionally, many questions remain 
regarding our fundamental understanding of the 
physical processes giving rise to predictability, as well 
as how best to design, build, postprocess, and verify 
a subseasonal prediction system. Amidst these ques-
tions, the U.S. National Oceanic and Atmospheric 
Administration (NOAA) was mandated to begin 
issuing week 3–4 outlooks for temperature and pre-
cipitation. NOAA has for many years released official 
outlooks for 1-week, 2-week, 1-month, and 3-month 
averages; week 3–4 prediction is a new area with many 
unique research and development concerns.

The Subseasonal Experiment (SubX), a research-
to-operations project, was launched to fulfill both 
the immediate need for real-time subseasonal pre-
diction guidance and to allow for the exploration of 
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relevant research questions, in order to develop more 
skillful and useful subseasonal predictions in the 
future. SubX takes a multimodel ensemble approach 
and includes global climate prediction models from 
both operational and research centers. As a research 
database designed around operational standards, 
SubX improves our ability to directly answer research 
questions in the service of developing better opera-
tional forecasts.

Combining models together into multimodel en-
sembles has been a successful technique to improve 
forecast quality for weather and seasonal predic-
tions (e.g., Hagedorn et al. 2005; Weigel et al. 2008; 
Kirtman et al. 2014; Krishnamurti et al. 2000, 1999). 
The skill improvement comes from two sources: first, 
the collection of a larger ensemble of model predic-
tions than that available from any individual forecast 
system, which allows for a better estimation of fore-
cast uncertainty, probability distribution, and signal-
to-noise ratio; equally advantageous is so-called 
“complementary skill,” or the additive skill from the 
different models. Also, as new versions of constituent 
models are introduced to the ensemble, a multimodel 
system can evolve faster than the typical improve-
ment cycle for a single model. Examples of current 
multimodel systems include the North American 
Multimodel Ensemble (NMME; Kirtman et al. 2014) 
and European Seasonal to Interannual Prediction 
(EUROSIP; Mishra et al. 2019), both seasonal forecast 
systems, and the North American Ensemble Forecast 
System (NAEFS; Candille 2009; Candille et al. 2010), 
which produces forecasts out to 14 days.

THE SUBX DATABASE. SubX provides a publicly 
available database of 17 years of historical reforecasts 
(1999–2015), plus more than 18 months of real-time 
forecasts from seven U.S. and Canadian modeling 
groups. All forecasts include daily values for at least 
32 days beyond the initialization date. See Table 1 for 
model descriptions and the appendix A for protocol 
details.

SubX has two unique aspects that distinguish it 
from other subseasonal forecast databases, such as 
the World Weather Research Programme (WWRP)/
World Climate Research Programme (WCRP) 
Subseasonal to Seasonal (S2S) Prediction Project 
(Robertson et al. 2015; Vitart et al. 2017). The first of 
these is the inclusion of research models alongside 
operational models from NOAA and Environment 
and Climate Change Canada, facilitating feedback 
between research and operations on model develop-
ment. A second distinction is the almost immediate 
availability of forecasts, allowing for use in real-time 
applications, including the NOAA Climate Prediction 
Center’s week 3–4 outlooks. This aspect of SubX has 
provided forecasters with additional forecast guid-
ance, and allows for a research experiment to assess 
and guide best practices and priorities for real-time 
predictions.

HOW SKILLFUL ARE SUBSEASONAL PRE-
DICTIONS WITH THE SUBX MODELS? In 
addition to physical scientific questions, the design 
of a subseasonal multimodel ensemble mean (MME) 
presents practical complications beyond those of a 
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weather or seasonal system. For example, a com-
mon challenge for subseasonal reforecast databases 
is that different models are initialized on different 
days, making it difficult to produce a traditional 
multimodel ensemble, typically made by averaging 
all forecasts from the same start date (Vitart et al. 
2017). The implications of this practical consideration 
are explored in the SubX project, wherein forecasts 
from different start dates over the course of 1 week 
are combined and verified for the same verification 
period. This methodology, called a lagged average 
ensemble, has been used in weather and seasonal 
forecasting with single models (e.g., Hoffman and 
Kalnay 1983; Kalnay and Dalcher 1987; Trenary et al. 
2018; DelSole et al. 2017).

Here, we evaluate the skill of the week 3 averages 
(average of days 15–21 of the forecast period) over all 
seasons from the individual SubX models ensemble 
means, as well as the MME, for anomalous tempera-
ture and precipitation over land. Skill is assessed us-
ing the anomaly correlation coefficient (ACC; Wilks 
2006). The ACC provides information about how well 
the variability of the forecasted anomalies matches 
the observed variability, and is calculated as the tem-
poral correlation of temporal anomalies at each grid 
point (Becker et al. 2014), shown as maps in Figs. 1 
and 2. Details of the observational datasets used for 
verification are provided in the sidebar “Verification 
datasets” and details of the methodology used for 
making climatology and anomalies are provided in 
the appendix B.

The skill of the individual models and MME are 
also compared to a forecast based on the persistence of 
the initial conditions, where the anomaly at the initial 
forecast time is predicted to continue throughout 
the forecast. Week 3 is beyond weather time scales, 
and predictability due to atmospheric initial condi-
tions is largely absent (Lorenz 1965, 1969). However, 
predictability due to slower varying components of 
the climate system, such as the global warming trend 
or the El Niño–Southern Oscillation, present in the 
initial anomaly will change little over a 3-week fore-
cast. Therefore, skill due to these mechanisms would 
be present in a persistence forecast. Comparison of 
forecast skill with the skill of a persistence forecast 
provides insights into whether forecast skill can be 
attributed to any of these slowly varying components.

Over all months, positive ACC for temperature 
forecasts is present over much of the land for most 
models and the MME, with substantial regional 
variations (Fig. 1). The ACC of the individual models 
and the MME are higher than the skill of a persis-
tence forecast, indicating that there is skill from 
sources other than the trend and/or ENSO (Fig. 1). 
While skill here is shown for the 15–21-day average 
forecasts for the individual models, the MME is pro-
duced from lagged averaged forecasts, and contains 
older model initializations (see the appendix C for 
details). However, the MME shows skill improve-
ment over the individual models. For precipitation, 
anomaly correlation maps for week 3 indicate that 
the only region of statistically significant skill when 

Table 1. Summary of models participating in SubX. In the components column, A = atmosphere, 
O = ocean, I = sea ice, and L = land. Numbers in the ensemble members column apply to reforecasts and 
real-time forecasts unless indicated by brackets, which indicate a different number of ensemble members 
used in real-time forecasts than those used in the reforecasts. Initial day of week refers to the day of the 
week the real-time forecasts fall on for each model. Community column indicates SEAS for seasonal pre-
diction community and NWP for numerical weather prediction community. The R/O column indicates O 
for operational models and R for research models.

Model Components Members
Length 
(days) Years

Initial 
day Community R/O Reference(s)

NCEP-CFSv2 A, O, I, L 4 45 1999–2016 W SEAS O Saha et al. (2014)

EMC-GEFS A, L 11 [21] 35 1999–2016 W NWP O
Zhou et al. (2016, 2017); 
Zhu et al. (2018)

ECCC-GEM A, L 4 [20] 32 1999–2014 Th NWP O Lin et al. (2016)

GMAO-GEOS A, O, I, L 4 45 1999–2015 Varies SEAS R

Koster et al. (2000);  
Molod et al. (2012);  
Reichle and Liu (2014);  
Rienecker et al. (2008)

NAVY-ESPC A, O, I, L 4 45 1999–2016
Th, F, Sa, 

Su
NWP R

Hogan et al. (2014);  
Metzger et al. (2014)

RSMAS-CCSM4 A, O, I, L 3 [9] 45 1999–2016 Su SEAS R Infanti and Kirtman (2016)

ESRL-FIM A, O, I, L 4 32 1999–2016 W NWP R Sun et al. (2018a,b)
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calculated over all months is in Brazil (Fig. 2). This 
region of precipitation skill is consistent across the 
individual models and has higher skill than a per-
sistence forecast; again, the MME has higher ACC 
than individual models, despite the inclusion of 
older model initializations.

While the multimodel ensemble mean method-
ology improves skill over the individual models, 
on average, skill at subseasonal time scales is low. 
However, there is evidence that skill varies over time. 
For example, there is seasonal dependence of skill for 
North America, with winter being more skillful than 
summer (e.g., DelSole et al. 2017). Skill also varies 
from year-to-year. This is evident in the SubX MME 
skill of spatial pattern correlations of North America 
temperature and precipitation anomalies for January 
initial conditions, which exhibits substantial varia-
tion with time (Fig. 3). At times, the ACC exceeds 

0.5, a common threshold for “useful” skill (Murphy 
and Epstein 1989; Barnston and den Dool 1994; Jones 
et al. 2000) while at other times, the ACC is zero or 
even negative. This indicates there may be potential 
for higher skill forecasts at certain times, called “fore-
casts of opportunity.” While a thorough diagnosis of 
these higher skill periods is outside the current scope 
of this paper, in the next section we examine some 
potential sources of subseasonal prediction skill.

SUBSEASONAL SOURCES OF PREDICT-
ABILITY. Subseasonal predictability is likely 
influenced by a number of modes of climate vari-
ability that vary on time scales of weeks, including 
the Madden–Julian oscillation (MJO; Madden and 
Julian 1971, 1972) or the North Atlantic Oscillation 
(NAO; Hurrell et al. 2010). Several studies have sug-
gested these modes may be predictable on subseasonal 

Fig. 1. ACC of 2-m temperature for week 3 (average of forecast days 15–21). Numbers in parentheses indicate 
the average ACC value over all land points in the domain. ACC values greater than 0.12 are statistically different 
from zero at the 5% level using a t test based on 219 degrees of freedom (17 years × 52 weeks = 884 forecasts/4-
week decorrelation estimate). For reference, an ACC of 0.4 (0.2) means that the model can explain 16% (4%) 
of the observed variance. The calculation is performed over reforecasts with initial conditions for all months 
from the years 1999–2014.
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Fig. 2. ACC of precipitation for week 3 (average of forecast days 15–21). Numbers in parentheses indicate the 
average ACC value over all land points in the domain. ACC values greater than 0.12 are statistically different from 
zero at the 5% level using a t test based on 219 degrees of freedom (17 years × 52 weeks = 884 forecasts/4-week 
decorrelation estimate). For reference, an ACC of 0.4 (0.2) means that the model can explain 16% (4%) of the 
observed variance. The calculation is performed over reforecasts with initial conditions for all months from 
the years 1999–2014. South America is shown as the only region with statistically significant skill.
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time scales, and present potential sources of predict-
ability, allowing for the identification of “forecasts 
of opportunity” (National Research Council 2010; 
National Academies of Sciences, Engineering and 
Medicine 2017). That is, due to known impacts from 
the subseasonal modes, model forecasts may be more 
skillful when these modes are active, allowing for 
more confidence in their output. Correctly simulating 
and predicting these processes and their impacts are 
the key to successful subseasonal prediction.

The Madden–Julian oscillation. The Madden–Julian 
oscillation, a dominant mode of tropical variability 

on subseasonal time scales, is a system of large-scale 
convective anomalies and associated circulation 
anomalies that propagates eastward from the tropical 
Indian Ocean and affects global weather [e.g., Cassou 
2008; Lin et al. 2009; Guan et al. 2012; Mundhenk 
et al. 2018; Zhang 2013; see Stan et al. (2017) for a 
review of MJO teleconnections].

Therefore, accurate simulation and prediction 
of the MJO and its propagation is crucial to extend 
global subseasonal forecast skill. Observed convec-
tive anomalies associated with the MJO, as indicated 
by outgoing longwave radiation (OLR) anomalies, 
propagate eastward from the Indian Ocean (60°E) 

to the date line (Fig. 4, top). 
Most of the SubX mod-
els can reproduce the ob-
served propagation of the 
OLR anomalies in week 3 
forecasts, although some 
appear to have difficulty 
propagating them across 
the Maritime Continent, 
approximately 120°E—a 
well-known challenge for 
global climate models (Kim 
et al. 2018).

A common measure-
ment of the MJO uses two 
Real-t ime Multivariate 
MJO (RMM) indices that 
combine OLR with winds 
at 200 and 850 hPa and 
measure the strength and 
phase of the MJO (Wheeler 
and Hendon 2004). A mod-
el’s ability to predict the 
combination of both RMM 
indices in terms of the bi-
variate correlation of the 
two indices provides insight 
into its overall capability to 
simulate and predict the 
MJO (Rashid et al. 2011). 
Most of the individual SubX 
models have ACC for these 
indices >0.5 out to week 4 
(Fig. 5). This range of pre-
diction skill is similar to the 
MJO skill of the WWRP/
WCRP S2S models, with 
the exception of the skill 
of the European Centre for 
Medium-Range Weather 

Fig. 3. ACC between observed and SubX MME spatial anomalies for week 3 
forecasts of (a) 2-m temperature and (b) precipitation over North America 
(15°–75°N, 190°–305°E) for the 71 MME January reforecasts over the 1999–2014 
reforecast period. Blue dashed and dotted lines indicate ACC of 0.0, 0.12, 
and 0.5.
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Forecasts (ECMWF) model, 
which far exceeds that of 
any other S2S or SubX mod-
el (Vitart 2017). The SubX 
MME has similar skill to 
the best individual models 
for weeks 1–3 and higher 
skill at week 4 (Fig. 5). The 
MME is consistent with the 
ECMWF model from the 
S2S database, which has 
ACC for RMM indices of 
0.6 out to 28 days (i.e., the 
end of the 4-week period; 
Vitart 2017).

It is of interest that the 
two most ski l lful SubX 
models at weeks 3 and 4 
have very different con-
figurations. The GMAO-
GEOS model is a fu l ly 

Fig. 5. RMM index skill in terms of bivariate anomaly correlation for Novem-
ber–March initialized reforecasts. NCEP-CFSv2 OLR data were not provided 
to the SubX database and are not included here.

Fig. 4. Week 3 (average of days 15–21) composite OLR (W m–2) averaged 5°S–5°N as a function of longitude 
(x axis) and phase (y axis) for MJO events identified based on RMM index amplitude ≥1.
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coupled atmosphere–ocean–land–sea ice model that 
has contributed to the monthly and seasonal NMME; 
this model contributes 4 ensemble members in SubX 
(see sidebar “SubX models”). In contrast, the base 
model of the EMC-GEFS is a numerical weather 
prediction atmosphere–land model forced with pre-
scribed sea surface temperatures (SSTs) and contrib-
utes 11 ensemble members to the SubX reforecasts. 
The comparable MJO prediction skill from these two 
models illustrates an open question of S2S ensemble 
prediction, as the varying contributions of model 
configuration, ensemble size, and the role of a fully 
interactive ocean model remain to be clarified.

The North Atlantic Oscillation. The NAO, indicated by 
an oscillation in surface pressure and geopotential 
height between the Iceland low and the Azores high, 
is a key source of extratropical subseasonal variability 
(Hurrell et al. 2010). The NAO has been linked to 
periods of extreme winter weather on subseasonal 
time scales in eastern North America and Europe 
(e.g., Hurrell et al. 2010). Until recently, there was little 
evidence that the NAO could be skillfully predicted 
beyond weather time scales (e.g., Johansson 2007; 
Kim et al. 2012); however, recent studies have found 
that the Met Office seasonal prediction system can 
produce skillful monthly predictions of the NAO up 
to 1 year into the future using large ensembles (>20 
members) and long reforecasts (~40 years; Scaife et al. 
2014; Dunstone et al. 2016).

Given both this newly discovered predictability 
of the NAO and its potential impacts on extreme 
weather at S2S time scales, we evaluate the skill of 
NAO prediction by the SubX models using a daily 
index representing the NAO (see “Verification da-
tasets” sidebar for details of the index calculation). 
All individual models, as well as the MME, exhibit 
ACC > 0.5 when forecasting this NAO index through 
week 2 (average of days 8–14), using initialization 
dates from the Northern Hemisphere winter (Fig. 6). 
While ACC drops for forecasts of week 3 and week 4, 
one individual model has ACC = 0.5, while all models 
have significant skill at week 3. Only for forecasts of 
week 4 does the ACC of the MME clearly exceed any 
individual model.

REAL-TIME FORECASTS. The SubX participat-
ing modeling centers have produced new forecasts 
each week since July 2017. These are provided to the 
NOAA Climate Prediction Center (CPC) as dynami-
cal guidance for their official week 3–4 temperature 
outlook and experimental week 3–4 precipitation 
outlook, issued every Friday. The CPC outlooks show 

Seven modeling groups participate in SubX:

•	National Centers for Environmental Prediction (NCEP) 
Climate Forecast System, version 2 (NCEP-CFSv2);

•	NCEP Environmental Modeling Center, Global Ensem-
ble Forecast System (EMC-GEFS);

•	Environment and Climate Change Canada Global 
Ensemble Prediction System, Global Environmental 
Multi-scale Model (ECCC-GEM);

•	National Aeronautics and Space Administration, Global 
Modeling and Assimilation Office, Goddard Earth Ob-
serving System (GMAO-GEOS);

•	Navy Earth System Prediction Capability (NAVY-ESPC);SB1

•	National Center for Atmospheric Research Community 
Climate System Model, version 4, run at the University 
of Miami Rosenstiel School for Marine and Atmospheric 
Science (RSMAS-CCSM4);

•	National Oceanic and Atmospheric Administration, 
Earth System Research Laboratory, Flow-Following 
Icosahedral Model (ESRL-FIM).

(For additional details, see Table 1.)

All groups have provided reforecasts for the 1999–2015 
period with the exception of ECCC-GEM (1999–2014)SB2 
and most have provided additional reforecasts to fill the 
gap between the end of the SubX reforecast period and 
beginning of the real-time forecasts in July 2017. Five of 
the groups use fully coupled atmosphere–ocean–land–sea 
ice models (NCEP-CFSv2, GMAO-GEOS, NAVY-ESPC, 
RSMAS-CCSM4, ESRL-FIM), while two groups use models 
with atmosphere and land components forced with pre-
scribed SSTs (EMC-GEFS, ECCC-GEM). In the EMC-GEFS 
forecast system, SSTs are specified by relaxing the SST 
analysis to a combination of climatological SST and bias-
corrected SST from operational NCEP-CFSv2 forecasts. 
The longer the lead time, the more weight given to the 
bias-corrected NCEP-CFSv2 forecast SST. In the ECCC-
GEM forecast system, the SST anomaly averaged from the 
previous 30 days is persisted in the forecast. The sea ice 
cover is adjusted in order to be consistent with the SST 
change [see Gagnon et al. (2013) for details]. Most groups 
provide four ensemble members for the reforecasts 
(NCEP-CFSv2, ECCC-GEM, GMAO-GEOS, NAVY-ESPC, 
ESRL-FIM) with some groups creating ensembles by 
combining different start times and others using their own 
ensemble generation systems to produce initial conditions. 
Some groups provide additional ensemble members in 
real-time (e.g., RSMAS-CCSM4, EMC-GEFS).

SUBX MODELS

SB1	 The NAVY-ESPC model is referred to as NRL-NESM in the 
SubX database and the change of name to NAVY-ESPC in the 
database is currently in progress. NRL-NESM and NAVY-ESPC 
refer to the same model.

SB2	 ECCC-GEM runs its reforecasts on the fly as part of their 
operational practice and will fill in 2015 at a later date.
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regions of increased probability of above-normal or 
below-normal temperature and precipitation, and 
regions where the probabilities of above or below 
normal are equally likely (i.e., 50/50 chance). Using 
guidance from the real-time SubX forecasts for 2-m 
temperature, precipitation, and 500-hPa geopotential 
heights as well as other tools, CPC forecasters produce 
the official maps for week 3–4 outlooks. For example, 
the maps for 6 July 2018 temperature and precipita-
tion show above- and below-normal areas consistent 
with the corresponding probabilities and anomalies 
from the SubX multimodel ensemble mean, demon-
strating the use of SubX in the CPC official outlooks 
(Fig. 7).

We also evaluate the skill of the SubX real-time 
2-m temperature forecasts produced from July 2017 
to December 2018. Overall the real-time forecasts 
have similar skill to the reforecasts (Figs. 1 and 8). 
The real-time forecasts are also substantially more 
skillful over the continental United States than the 
reforecasts. Skill is expected to vary from year to 
year, depending on the presence or absence of major 
modes of climate variation, land surface conditions, 
and other factors. The sources of the higher skill over 
the continental United States during this period re-
main to be identified, but could come from the trend, 
ENSO, or other sources.

REAL-TIME PREDICTION OF HAZARD-
OUS AND EXTREME EVENTS. Disaster pre-
paredness and emergency management is one sector 
for which prediction of hazardous and extreme 
weather on S2S time scales is of particular interest 
(e.g., White et al. 2017). As an example of how SubX 
real-time forecasts can po-
tentially provide informa-
tion useful to this sector, 
Fig. 9 shows precipitation 
forecasts associated with 
Hurricane Michael for the 
SubX real-time forecasts. 
These forecasts were is-
sued on 20 September 
2018, prior to the forma-
tion of Michael, and were 
valid for the 2-week period 
of 6–19 October. All SubX 
models indicated the po-
tential for precipitation 
anomalies in this period in 
excess of 50 mm over the 
2-week period along a line 
stretching from southwest 

Calculation of skill requires a verifying observational da-
taset. Where applicable, the datasets used correspond 

to those used by CPC for verification of their forecasts. 
For 2-m temperature over land, the CPC daily tempera-
ture dataset with horizontal resolution of 0.5° × 0.5° is 
used.SB3 These data are provided as a maximum (Tmax) 
and minimum (Tmin) daily temperature, thus the average 
daily temperature is calculated as the average of Tmax 
and Tmin (Fan and van den Dool 2008). For precipitation 
over land, the CPC Global Daily Precipitation dataset 
(0.5° × 0.5°) is used (Xie et al. 2007; Chen et al. 2008). 
Verification datasets are regridded to the coarser SubX 
model resolution of 1° × 1° prior to performing model 
evaluation. The years 1999–2014 are used for evaluation 
of the 2-m temperature and precipitation skill.

We also evaluate the skill of indices representing 
two subseasonal phenomena that are known sources of 
S2S predictability–the MJO and the NAO. The MJO skill 
is evaluated using the RMM index without interannual 
variability removed (Wheeler and Hendon 2004). The 
observed index is calculated using the NCEP–NCAR 
reanalysis (Kalnay et al. 1996) and NOAA Interpolated 
OLR (Liebmann and Smith 1996). The NAO is defined as 
the projection of the December–February geopotential 
height at 500 hPa (Z500) onto the leading North Atlantic 
EOF spatial pattern of Z500 (0°–90°N, 93°W–47°E). 
The observed NAO index is calculated using 500-hPa 
geopotential height from the NCEP–NCAR reanalysis 
(Kalnay et al. 1996). The years 1999–2014 are used for 
the evaluation of MJO and NAO skill. Both indices are 
calculated daily and then averaged to weekly values for 
skill calculations.

VERIFICATION DATASETS

SB3	 The original data can be found at ftp://ftp.cpc.ncep.noaa.gov 
/precip/PEOPLE/wd52ws/global_temp/.

Fig. 6. NAO index skill in terms of ACC for December–February initialized 
reforecasts.
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Fig. 7. SubX real-time multimodel ensemble mean anomaly and probability guidance for (a),(b) temperature 
and (d),(e) precipitation and corresponding CPC official week 3–4 outlook products for (c) temperature and 
(f) precipitation. Forecasts were made 6 Jul 2018. The temperature in (b) and precipitation in (e) probability 
maps are for above-normal categories.
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to northeast across Florida at 3 weeks lead time. 
Tropical Storm Michael formed on 7 October and 
made landfall as a hurricane along the Florida pan-
handle on 10 October. The storm tracked across the 
panhandle and through the southeastern United 
States, delivering heavy rainfall. Although the actual 
track is not accurately predicted at this lead time, 
the forecast for a potential tropical cyclone and as-
sociated enhanced precipitation during this period 
is useful information, potentially helping emergency 
managers to plan and aid organizations to stage 
supplies in anticipation of a disaster. A similar early 
picture was provided by SubX for Hurricane Harvey. 
SubX models forecasted anomalously high precipita-
tion over the week spanning 24–31 August in Texas 
and Louisiana at 3–4-week lead times (not shown). 
Case studies such as these add to our understand-
ing of the prediction and predictability of extreme 
events, especially in the context of a database de-
signed for operational considerations.

CONCLUDING REMARKS. SubX provides a 
comprehensive, publicly available research infrastruc-
ture in the service of developing better S2S forecasts. 
It consists of a database of seven global models that 
have produced a suite of 17 years of historical refore-
casts and also have provided weekly real-time fore-
casts since July 2017. The inclusion of research and 
operational models and availability of both real-time 
and retrospective forecasts in SubX provides a unique 
contribution to community efforts in subseasonal 
predictability and prediction.

With the availability of subseasonal reforecast 
databases such as SubX and WWRP/WCRP S2S, 
it is now possible for the research community to 
extensively explore the full range of subseasonal 
predictability, and to develop methodologies for S2S 
postprocessing including forecast calibration and 
multimodel ensemble weighting (e.g., Vigaud et al. 
2017a,b). Additionally, the contribution of individual 
models to an MME can be explored comprehensively. 

Fig. 8. SubX real-time week 3 (average of forecast days 15–21) forecast skill for 2-m temperature over the period 
July 2017 to December 2018. Numbers in parentheses indicate the average ACC value over all land points in the 
domain. Statistical significance is not calculated or shown for the real-time forecasts due to small sample size.
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The inclusion of research models in SubX makes it 
possible for this research to directly feedback to model 
development. The availability of real-time subsea-
sonal forecasts in SubX also enables the development 
of real-time forecast demonstration prototypes for 
applications in various socioeconomic sectors. We 
hope that the community will use the SubX data-
base to provide input into pressing questions in S2S 
predictability and prediction, design tools relevant 
to decision making on the S2S time scale, and test 
and compare model developments for better S2S 
predictions.

Some important questions regarding S2S predic-
tions remain unanswerable with the current datasets, 
including SubX. For example, in a second phase of 
SubX, with a more strict protocol aligning model 
initialization dates, it would be easier to combine 

models into an MME and we could better untangle 
questions about the contributions of individual 
models. Another improvement for a second phase 
would be to produce a longer reforecast period and a 
larger ensemble to evaluate the number of years and 
ensemble members needed to robustly quantify S2S 
skill and identify forecasts of opportunity.
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National Hurricane Center.
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APPENDIX A: SUBX PROTOCOL. The SubX 
protocol required that each modeling group ad-
here to a rigid scope of retrospective and real-time 
forecasts. The groups agreed to produce 17 years 
of reforecasts out to a minimum of 32 days for the 
years 1999–2015. Initialization was required at least 
weekly, and a minimum of three ensemble members 
were required, although more were encouraged. Since 
the land surface (e.g., soil moisture) is an important 
source of subseasonal predictability (Koster et al. 
2010, 2011), all models were required to include a 
land surface model and initialize both the atmosphere 
and land. Additionally, coupled ocean–atmosphere 
models were also required to initialize the ocean. The 
SubX project has also performed more than 1 year 
of real-time forecasts. During this demonstration 
period, forecasts were required to be made available 
to CPC by 1800 local time every Wednesday. This 
requirement was relaxed to 0800 local time Thurs-
day partway through the real-time demonstration 
period. All data were provided on a uniform 1° × 1° 
longitude–latitude grid as full fields to both CPC for 
their internal use and the International Research In-
stitute for Climate and Society Data Library (IRIDL) 
for public dissemination (Kirtman et al. 2017).

APPENDIX B: CLIMATOLOGY AND BIAS 
CORRECTION. A forecast is typically initialized 
with an analysis in which observations have been 
assimilated, thereby constraining the initial state to 
represent the observed state as closely as possible. 

As the forecast time increases, the model state on 
average moves from the observed climate toward a 
model-intrinsic climate, which is typically biased. 
Therefore, it is common practice in S2S predictions 
to estimate and remove the mean forecast bias using 
a set of reforecasts (e.g., Zhu et al. 2014). Addition-
ally, the skill of forecasts at S2S time scales is typi-
cally evaluated in terms of anomalies or differences 
from the mean climate, thus requiring a climatology 
based on reforecasts. Both of these needs are met by 
determining the model climatology as a function of 
lead time and initialization date. For seasonal predic-
tions using monthly data, it is typical to calculate the 
model climatology as a multiyear average for each 
forecast start month and lead or target time (Tippett 
et al. 2018). However, calculation of the climatology 
is not trivial due to differences in initialization day 
and frequency among models. For example, some 
forecast models are initialized on the same Julian 
days every year while others are initialized on a 
day-of-the-week schedule, meaning that the Julian 
initialization dates shift from year to year. In the first 
case, the 17-yr reforecast period yields 17 model runs 
on some calendar dates and none on the rest. In the 
second case, only 2–3 model runs are available for 
each day of the year from which to determine the 
climatology. An additional challenge for the SubX 
project was that a climatology was needed to pro-
duce bias-corrected forecast anomalies in real-time 
for CPC prior to the completion of the reforecasts at 
some centers. The need to compute model climatol-
ogy adaptively will recur because some models will 
likely change during the forecast phase due to routine 
model improvements. Additionally, many operational 
models used by the CPC only provide reforecasts “on 
the fly” (e.g., ECMWF and Environment and Climate 
Change Canada ensembles generate reforecasts for 
a single day of the year with each real-time forecast 
initialization).

To compute the climatology, the first step is to 
calculate ensemble means for individual days of 
each forecast run. For most groups, ensembles are 
produced by averaging initialization dates from 
different hours of the same initialization day; these 
are averaged to yield ensemble means for the 24-h 
period spanning each forecast day. In the case of the 
NAVY-ESPC, which produces ensemble means over 
runs started on four consecutive days because ocean 
data assimilation is based on a 24-h data cycle, the 
ensemble mean consists of a single member for each 
day. Next, for each day of the year (1–366), a multiyear 
average of the ensemble means is calculated. Depend-
ing on how model runs are scheduled, this may not 
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produce a climatology for each day of the year for 
some models. Finally, a triangular window is applied 
to the (fairly noisy as well as sparse in some cases) 
climatology, meaning that weight decreases linearly 
with distance from the center point. A smoothing 
window of 31 days (±15 days) is applied in a peri-
odic fashion such that December smoothing includes 
January values and vice versa. This approach means 
that the forecast climatology can be computed from 
a partial reforecast database whereby only refore-
casts with nearby initializations are required. Due 
to drift from the initial quasi-observed state to the 
model’s own internal mean state, the climatology 
for a given calendar day is expected to be different 
for different lead times. Therefore, the above proce-
dure is performed for each lead time and each model 
individually. Removal of this climatology from the 
corresponding full fields produces anomalies and 
effectively performs a mean bias correction (Becker 
et al. 2014). Climatologies have been computed for 
many variables following this procedure and are 
available from the IRIDL.

Another common methodology is to fit harmonics 
to the data (Saha et al. 2014; Tippett et al. 2018). Both 
our smoothing methodology and the fitting of har-
monics can be viewed as a special case of local linear 
regression [Tippett and DelSole 2013; see Hastie et al. 
(2009) for a review]. Mahlstein et al. (2015) previously 
proposed using local linear regression to compute 

climatologies of daily data. Local linear regression 
estimates a simple function of the predictors using 
data close to the desired climatology target in such a 
way as to yield a smooth function of the predictors. 
Figure A1 demonstrates that with synthetic data and 
a known climatology, the methodology used in SubX 
(green line) produces a climatology very close to the 
one obtained with a harmonic (red) using a similar 
number of years (16 years) and initial condition sam-
pling (every 7 days) as SubX.

APPENDIX C: MULTIMODEL ENSEMBLE 
MEAN. Since the SubX models are initialized on 
different days, producing an MME becomes a chal-
lenging problem (e.g., Vitart et al. 2017). In SubX, we 
choose to align the verification dates of each model 
to produce an MME so that skill could be assessed 
for the same verification period in observations. 
Additionally, this choice reproduces well the setup 
for weekly real-time forecasting. Following the same 
procedure used by CPC for producing real-time fore-
casts, Saturday is defined as the first day of a given 
week. All reforecasts for all models that are produced 
during the prior week (previous Friday–Thursday) 
are used to produce an MME forecast for weeks 1–4 
individually, where week 1 is defined as the first Sat-
urday–Friday interval. Friday initializations are not 
included in an attempt to mimic real-time forecast 
procedures. In real time, forecasts provided after 0800 

local time Thursday can-
not be processed in time to 
be used by the forecasters 
because forecasters must 
review forecast guidance 
on Thursday and issue the 
forecast on Friday. This 
procedure, which also in-
volves forming averages of 
daily forecasts over the ap-
propriate week, is repeated 
for weeks 2–4. Weeks 3 
and 4 are then averaged to-
gether to produce week 3–4 
forecasts. Using this proce-
dure, a multimodel ensem-
ble mean, equally weighted 
by model can be produced 
by averaging the ensem-
ble means of each of the 
models for their week 3–4 
forecasts. There are some 
potential drawbacks to this 
procedure. For example, 

Fig. A1. Results of estimating the climatological mean of a synthetic time 
series. The mean of each calendar day is shown as the gray curve (sample 
mean), a harmonic fit is shown as the red curve (harmonic), and a local linear 
regression fit based on p = 1 and quadratic function p = 2 are shown as the 
green and orange curves (using = 28)
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some models will contribute older forecasts to the 
MME than others, depending on their initialization 
date. The extent to which decreased skill with longer 
lead time is balanced by increased ensemble size and 
model diversity in such an ensemble remains an open 
research question to be addressed in future research. 
Additionally, since the period over which forecasts 
are obtained is Saturday–Thursday (a 6-day period, 
used to mimic the 6-day period of real-time forecast 
initializations) and some of the models initialize 
once every 7 days, there are times when a model will 
not be included in the MME, depending on how the 
reforecast dates fall. For example, this occurs with 
the ECCC-GEM model in approximately 13% of the 
weekly forecasts. Finally, in rare cases, it is not pos-
sible to produce a week 3–4 forecast for the ECCC-
GEM model since part of week 4 is not available 
due to the reforecast initialization day and 32-day 
reforecast length.
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